Targeting the Tumor Microenvironment to Enhance the Effectiveness of Cancer Therapies

Oct 2017
Forward-Looking Statements

The information and opinions contained in this presentation and any other information discussed at this presentation are provided as at the date of this presentation and are therefore of a preliminary nature, have not been independently verified and may be subject to updating, revision, amendment or change without notice and in some cases has not been audited or reviewed by the Company’s auditors. This presentation is selective in nature and does not purport to contain all information that may be required to evaluate the Company and/or its securities. Neither the Company nor any other person is under any obligation to update or keep current the information contained in this presentation or to correct any inaccuracies in any such information which may become apparent or to provide you with any additional information. No reliance may or should be placed for any purpose whatsoever on the information contained in this presentation, or any other information discussed verbally, or on its completeness, accuracy or fairness. None of the Company, Invest Securities, or any of their respective directors, officers, employees, direct or indirect shareholders, agents, affiliates, advisors or any other person accept any responsibility whatsoever for the contents of this presentation, and no representation or warranty, express or implied, is made by any such person in relation to the contents of this presentation.

Certain information in this presentation is based on management estimates. Such estimates have been made in good faith and represent the current beliefs of applicable members of management. Those management members believe that such estimates are founded on reasonable grounds. However, by their nature, estimates may not be correct or complete. Accordingly, no representation or warranty (express or implied) is given that such estimates are correct or complete. Where this presentation quotes any information or statistics from any external source, it should not be interpreted that the Company has adopted or endorsed such information or statistics as being accurate. This presentation contains forward-looking statements. These statements reflect the Company’s current knowledge and its expectations and projections about future events and may be identified by the context of such statements or words such as “anticipate,” “believe”, “estimate”, “expect”, “intend”, “plan”, “project”, “target”, “may”, “will”, “would”, “could”, “might” or “should” or similar terminology. By their nature, forward-looking statements are subject to a number of risks and uncertainties, many of which are beyond the Company’s control that could cause the Company’s actual results and performance to differ materially from any expected future results or performance expressed or implied by any forward-looking statements. The Company undertakes no obligation publicly to release the results of any revisions to any forward-looking statements in this presentation that may occur due to any change in its expectations or to reflect events or circumstances after the date of this presentation.
Who Are We?

Aram Mangasarian, PhD - Chief Executive Officer
- Formerly Chief Business Officer at NOXXON
- Headed Business Development at Novexel - €75m upfront licensing deal with Forest Labs in 2008 on avibactam; company bought by AstraZeneca for $505m in 2010
- Ran Business Development at ExonHit Therapeutics; closed $30m discovery and development alliance with Allergan

Dr. Jarl Ulf Jungnelius – CMO
- Oncologist with more than 25 years clinical and research experience in large pharma and academic organizations
- Leadership positions at Celgene, Pfizer, Takeda and Eli Lilly & Company
- Significant role in the approval of multiple successful oncology drugs including Abraxane®, Gemzar®, Alimta® and Revlimid®
Novel anti-cancer approach that targets the **tumor micro-environment (TME)** through potent, clinically validated activity on key TME chemokines

Ongoing: Phase 1/2 as combo of lead program NOX-A12 with Merck & Co.’s KEYTRUDA® to test efficacy in strategic solid tumor indications

Established combination therapy safety and efficacy data for NOX-A12 in two hematological cancers: CLL & MM

Company primed to deliver top-line results on Phase 1/2 trial in 2018

Market: EuroNext Growth Paris – ALNOX

Market capitalization: ~ €27 million - Key shareholders include: TVM, Sofinnova, Edmond de Rothschild Investment Partners, NGN & Seventure Capital

Cash: ~ €1.4 million as of 31-May-2017¹, subsequent financing of €1.5 million via convertible debt² / an additional €2m may be pulled by the company³, venture debt remaining not-yet-converted to equity reduced to €841K⁴

Projected cash burn: ~€350K/month (including the NOX-A12/KEYTRUDA® clinical trial)

~ 10 employees, headquarters in Berlin, Germany

¹ Management Accounts, Pharma NV Prospectus, approved 10 July 2017
² NOXXON Press releases 18 July 2017, 19 Sept 2017
³ NOXXON Press release 2 May 2017
⁴ NOXXON Press release 2 May 2017, 18 July 2017
Recent Business Highlights

Dec - **Collaboration with Merck & Co./MSD** on NOX-A12 and Keytruda® (pembrolizumab), combination trial

Jan - **Preclinical Spiegelmer® programs assigned and licensed** to Aptarion in exchange for cash, royalties and equity stake in Aptarion

Feb - Experienced industry cancer clinician **Dr. Jarl Ulf Jungnelius recruited as CMO: Celgene, Pfizer, Lilly** with significant involvement in approved drugs: Abraxane®, Gemzar®, Alimta® and Revlimid®

May - **Private placement & convertible debt financing vehicle** designed to secure financing of clinical trial combining NOX-A12 and Keytruda® (pembrolizumab)

May - **German National Tumor Center** collaboration announced for NOX-A12 & Keytruda trial in pancreatic and colorectal cancer

July – **First patients treated in NOX-A12 and Keytruda® combination study**, transfer of ALNOX shares to public offering segment of EuroNext Growth & 1st tranche convertible debt

Sept – Patients recruitment reaches half-way mark in NOX-A12 and Keytruda® combination study, safety of NOX-A12 as expected from established studies and confirmation of activity on target in tumor tissue

Sept - Don deBethizy, US & EU biotech industry veteran elected chairman
The Problem: Key Tumor Types With High Unmet Needs that are Non-Responsive to Checkpoint Inhibition – T-cells Excluded

- **Metastatic COLORECTAL cancer**
 > Median survival: 6 months - 2 years\(^1\)
 > 5 year survival rate: **13.5 %**\(^2\)

- **Metastatic PANCREATIC cancer**
 > Median survival: 6 months – 1 year\(^3\),
 > 5 year survival rate: **2.6 %**\(^4\)

- Both tumor types are **non-responsive to checkpoint inhibitors** (e.g. Merck’s KEYTRUDA® or BMS’ Opdivo®) alone when microsatellite stable (the vast majority of patients)\(^5\)

- Both tumors **exclude killer T-cells via the chemo-repulsive action of high CXCL12 concentrations**, creating a chemokine “wall”\(^6\)

Pipeline Assets Leverage Existing Anti-Cancer Therapies to Optimize their Therapeutic Efficacy

NOX-A12 - anti-CXCL12/SDF-1

COMBINE WITH

1. **BREAK TUMOR PROTECTION**
2. **EXPOSE HIDDEN TUMOR CELLS**
3. **BLOCK TUMOR REPAIR**

IMMUNOTHERAPY

SOLID TUMORS
- **PANCREATIC/COLORECTAL CANCERS**
 - Status: Ongoing Phase 1/2 in combination with Keytruda® (anti-PD-1)
- **BLOOD CANCERS** MM & CLL
 - Status: Phase 2a studies completed in MM & CLL

TARGETED THERAPIES

The combination of NOX-A12 + standard of care (SoC) resulted in an increased rate and quality of response relative to comparable trials with SoC or SoC + competitor molecules

ABLATION/RADIATION

SOLID TUMORS GLIOBLASTOMA (orphan drug status)
- Status: Phase 1/2 planned 1st line, Temodar resistant inoperable patients

BLOOD CANCERS

Targeted Therapies

Combination with Immunotherapy

NOX-E36 - anti-CCL2/MCP-1 and related chemokines

COMBINE WITH

1. **BREAK TUMOR PROTECTION**

IMMUNOTHERAPY

SOLID TUMORS
- Status: Phase 1 & 2a completed in non-oncology indications, plan to shift into solid tumors with the goal of blocking tumor resistance to immuno-oncology agents

Spiegelmer Platform: Next-Generation L-stereoisomer RNA Aptamers with Activity on an Important Family of TME Targets, Chemokines

- Spiegelmers use Mirror-image (L-stereoisomer) chemistry to build injectable oligonucleotide (RNA or DNA) therapeutics

- Spiegelmers are aptamers that directly bind and neutralize protein targets in the extracellular space

- Mirror image stereochemistry provides resistance to nuclease degradation and prevents reaction of the innate immune system via toll-like receptors (TLRs)

- Confirmed clinical activity on two chemokines known to be key players in the tumor microenvironment (TME) and difficult to effectively target with other platforms

Novel Approach: Targeting the Tumor Microenvironment to Overcome Therapeutic Resistance

- The tumor microenvironment plays a critical role in all aspects of cancer biology including growth, angiogenesis, metastasis, progression and immune evasion

- Target the tumor microenvironment (TME) to:
 - weaken tumors
 - allow the immune system to reach tumor cells
 - strengthen efficacy of best-in-class cancer therapies

- Lead product candidate NOX-A12:
 potential combination partner for a wide variety of cancer treatment regimens including:
 - immune checkpoint inhibitors
 - T-cell based (CAR-T) and NK cell based approaches, and
 - ablation/radiation and targeted therapies

NOX-A12 Neutralizes a Key Player in the TME: The Chemokine CXCL12

NOX-A12 binding
neutralizes anchor domain detaching chemokine / destroying the chemokine concentration gradient

NOX-A12 binding
the ligand CXCL12 blocks receptor interaction with BOTH receptors and down-stream signaling

CXCL12 CHEMOKINE
Normal function: attraction of cells
High concentration: T-cell chemo-repulsion

Receptor interaction domain

TUMOR CELL OR IMMUNE SYSTEM CELL

CXCR4

CXCR7

STROMAL CELL (connective tissue cell)

Anchor domain to form gradient
NOXXON Clinical-stage Compounds Address Essential Steps in the Cancer Immunity Cycle

- **Trafficking** of T-cells and myeloid cells to tumors
- NOX-A12 & NOX-E36
- **Infiltration** of T-cells and myeloid cells into tumors
- **Enable immune cell infiltration & recognition of cancer cells**
- **Boost anti-tumor immunity**

A unique mechanism to enable TME infiltration of anti-cancer immune cells

Adapted from Chen & Mellman 2013 Immunity.
NOX-A12 Full Blockade of CXCL12 Axis Superior to CXCR4 Antagonists

Select companies active on the CXCL12 / CXCR4 / CXCR7 axis in cancer:\(^1,2\):

- All clinical-stage competitors target only CXCR4 and do not block the CXCL12/CXCR7 interaction
- Clear differentiation vs. mAbs and small molecules in development

1. Clinicaltrials.gov and company websites (accessed October 2015)
NOX-A12 activity blocking CXCL12-CXCR7 interaction provides strong differentiation in solid tumors

CXCR7 (ACKR3) is an atypical chemokine receptor
- Binds CXCL12 with 10-fold higher affinity than CXCR4\(^1,2\)
- Expressed on wide variety of tumor cells and tumor-associated vasculature\(^1,4\)
- Acts as CXCL12 scavenger\(^2\), potentially modulating CXCL12 gradients
- Triggers intracellular signaling pathways via Akt, MAPK, JAK/STAT3\(^2\), mTOR\(^3\)

CXCR7 has key functions for tumor development and contributes to an invasive phenotype\(^3,7\)
- Growth
- Migration & chemotaxis
- Adhesion
- Angiogenesis
- Chemotherapy resistance
- Spreading / metastasis

CXCR7 expression correlates with advanced tumor stage and poor prognosis\(^13-15\)

CXCR7 is a target for tumor therapy independent from CXCR4 in
- Glioblastoma\(^1,10\)
- Pancreatic Cancer\(^3\)
- Breast Cancer\(^4\)
- Lung Cancer\(^4\)
- Head and Neck Cancer\(^8\)
- Hepatocellular Carcinoma\(^11\)
- Colon Cancer\(^12\)
- Gastric Cancer\(^9\)
- Multiple Myeloma\(^5\)

1: Walters, M.J. et al., Br J Cancer, 2014
3: Guo, J-Ch. et al., Oncotarget, Advance publications, 2016
4: Miao, Z. et al., PNAS, 2007
7: Yun, H-J. et al., Oncol Lett, 2015
8: Maussang, D. et al., J Biol Chem, 2013
10: Liu, Y. et al., Anticancer Res, 2015
11: Xue, T-C. et al., Exp Ther Med; 2012
12: Guillemot, E. et al., Br J Cancer, 2012
Solid Tumors are Protected by a “Biochemical CXCL12 Wall”

- **T-cells are excluded from “cancer cell nests”**
- Intratumoral CXCL12 is produced by carcinoma-associated fibroblasts (CAFs) and is associated with cancer cell nests\(^1\)
- CXCL12 expression and T-cell exclusion is associated with human pancreatic, colorectal, ovarian and lung cancer\(^2\)
- Mechanism for T-cell exclusion might be apoptosis and/or chemorepulsion by CXCL12\(^2,3\)
- CXCL12 appears to coat tumor cells and serve as a repulsion factor for certain cells types, including killer T cells keeping them out of tumors even in presence of checkpoint inhibitors
- Both metastatic pancreatic and colorectal cancers are non-responsive to checkpoint inhibitors (e.g. Merck’s KEYTRUDA\(^®\) or BMS’s Opdivo\(^®\)) alone when microsatellite stable (the vast majority of patients)\(^4\)

1. Feig, C. et al. PNAS 110.50 (2013): 20212-20217
NOX-A12 Enhances Infiltration of Primary Human T-cells and NK Cells into Tumor Stroma Spheroids and Synergizes with Checkpoint Inhibitors to Boost Their Anti-Cancer Activity \textit{in vivo}

\textbf{In Vitro, NOX-A12 shows}1
- Increased T and NK cell infiltration in tumor spheroids
- Synergy with checkpoint inhibition on T-cell activity
- Synergy with NK cells on ADCC

\textbf{In Vivo NOX-A12 study shows}2
- Significant reductions in tumor growth in a model poorly responsive to PD-1 inhibition
- A majority of animals with stable or reduced tumor volumes

1 Spheroid data: Zboralski, D., et al., (2016) ESMO Congress 2016, Copenhagen, Denmark, October 2016 Session Immunotherapy of cancer: Abstract #1083P

2 Syngeneic colon cancer mouse model CT26 tumor: Unpublished Company data
Collaboration with Merck & Co. / MSD1
Potential Route to Early Approval in Solid Tumors

• Collaboration on Phase 1/2 clinical trial of NOXXON’s anti-CXCL12 agent, NOX-A12, and MSD’s anti-PD-1 inhibitor, Keytruda® (pembrolizumab)

• Indication - patients with metastatic solid tumors where response to checkpoint inhibition has been dismal

• Clinical trial design - collaborative effort between NOXXON and Merck

• Merck to provide Keytruda® free of charge to NOXXON for trial

• Multiple paths for further development of the combination in pivotal clinical trials are envisioned as part of agreement

• Agreement grants no commercial rights to either party for other party’s compound

• With the potential for breakthrough designation in these indications NOXXON believes these indications may be a potential route to early approval in solid tumors2

1. NOXXON Pharma Press release 15 Dec 2016
2. NOXXON Pharma NV Prospectus of 10 July 2017
NOX-A12; Ongoing Phase 2a Trial in Colorectal & Pancreatic Tumors

Next development steps

- Phase 1/2 proof-of mechanism/concept trial in 2 indications:
 1. Colorectal cancer (MSS) 10 patients
 2. Pancreatic cancer (MSS) 10 patients

- Response rate in targeted patient population to anti-PD-1 alone ~0%

- Regulatory scientific advice will be planned when data available

Trial Design

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Part 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX-A12 Induction</td>
<td>NOX-A12 + Keytruda®</td>
</tr>
</tbody>
</table>

1. Patients with available tumor for assessment before and after NOX-A12 treatment for 2 weeks

 Primary endpoint:
 Changes in the tumor microenvironment induced by NOX-A12: immune cells & cytokine/chemokine profile

2. Patients from Part 1 then transitioned to combination treatment of NOX-A12 with checkpoint inhibitor

 Endpoint:
 Assess safety and efficacy of combination

Timeline

- **Q2-2018** - Top-line data from Part 1 for all patients
- **Q4-2018** - Response rate of NOX-A12 + Keytruda in all patients

1. Clinicaltrials.gov trial NCT03168139
2. NOXXON Pharma NV Prospectus of 10 July 2017

MSS = microsatellite stable
NOX-A12: Strong Synergy with Ablative Therapy in Glioblastoma

ORPHAN DRUG STATUS for glioblastoma in combination with radiotherapy in the US and for glioma in the EU

NOX-A12 + radiotherapy:
- Tumor regression with complete response in all animals;
- Complete response maintained after stop of treatment in two-thirds of animals
NOX-A12: Planned Phase 2a Trial
Temodar Resistant Brain Tumors in Combination with Radiotherapy

Next development steps¹

- Phase 1/2 proof-of-concept trial in

- Anticipated trial design:
 - Open-label, single arm in patients with inoperable glioblastoma who are resistant to standard of care temozolomide
 - Primary endpoint: progression-free survival (PFS) after 6 months
 - Standard radiotherapy + NOX-A12
 - ~18 patients with inoperable brain tumors, may be extended up to ~35 patients
 - Positive study will be basis for regulatory interaction on pivotal trial design
NOX-A12: High Potential as Combination Partner for Broad Range of Cancer Therapies

- Antibodies
- Cytotoxics
- Targeted therapies
- Ablation *including* radiation
- Immunotherapies
 - checkpoint inhibitors
 - co-stimulators
 - CAR-T
 - other

NOX-A12: TME targeting yields combination potential with broad range of cancer therapies
NOX-E36: Phase 2-ready Oncology Drug Candidate

- **CCL2/MCP-1 is implicated in cancer spread and immune privilege of tumors**, data from Pfizer’s antagonist of CCR2 (receptor for CCL2) in pancreatic cancer patients suggests this translates into improved efficacy¹

- **NOX-E36 binds and neutralizes CCL2 (MCP-1) and three other highly related chemokines**²

- **NOX-36 neutralizes 3 of 4 monocyte/macrophage relevant chemokines of the Innate PD-1 Resistance (IPRES) Signature³ while competing receptor antagonists will only fully block 1 of these 4 chemokines**

- **NOX-E36 is ready to enter Phase 2 in oncology: safety & tolerability, activity on relevant cell types established in Phase 1 and a non-oncology Phase 2⁴**

1. Nywening Lancet Oncol 2016 http://dx.doi.org/10.1016/S1470-2045(16)00078-4
NOX-E36 Inhibits Activity of Chemokines Important in PD-1 Resistance

- NOX-E36 binds and neutralizes CCL2 (MCP-1), CCL8 (MCP-2), CCL13 (MCP-4) and CCL11 (Eotaxin) chemokines

- CCL2, CCL7, CCL8 and CCL13 are the monocyte/macrophage relevant components of the Innate PD-1 Resistance (IPRES) Signature\(^1\) – NOX-E36 neutralizes 3 of 4\(^2\)

- CCR2 or CCR2/CCR5 specific receptor antagonists will not fully block any of the chemokines other than CCL2: potential for best in class
Phase 2a Pharmacodynamics of NOX-E36 (Monocyte Shift)

Upon treatment with NOX-E36,
- The number of monocytes in peripheral blood decreases by 15-20% on treatment
- The presence of the CCL2 receptor CCR2 on the monocytes is reduced 4 to 5-fold

NOX-E36– Key Messages

- Generally safe and well tolerated following i.v. and s.c. administration
- Clear pharmacodynamic effect on monocyte-relevant chemokines on circulating monocyte populations…
- …and reduced urinary ACR and HbA1c levels in treated patients
- No competitor with comparable pharmacology on monocyte/macrophage relevant chemokines in Innate PD-1 Resistance Signature (IPRES) in industry pipeline
- Compound ready to move into proof-of-concept studies in cancer patients
NOXXON Highlights

- Novel anti-cancer approach using proprietary Phase 2 agents targeting the tumor microenvironment to weaken tumors and strengthen efficacy of best-in-class cancer therapies including immuno-oncology (IO) agents

- Lead product candidate NOX-A12 positioned as a potential combination partner for a wide variety of cancer treatment regimens, including immune checkpoint inhibitors, T-cell based (CAR-T) and NK cell based approaches

- NOX-E36 provides additional upside potential in TME space

- Significant progress planned in 2018 with potential to achieve additional clinical data-points rapidly with additional financing
 - NOX-A12 Go/No-Go for pivotal studies
 - In combination with Keytruda in MSS disease mCRC and/or Pancreatic cancer
 - In combination with radiotherapy in Glioblastoma (additional financing required)
 - NOX-E36 clinical proof of concept in advanced solid tumors (additional financing required)
Appendix
Supervisory Board

Dr. Don deBethizy (Chairman)
- CEO of Santaris Pharma, Denmark and USA until sale to Roche
- Chairman of Rigontec GmbH until sale to Merck & Co./MSD
- Formerly Chairman Contera Pharma ApS, Serendex A/S
- Co-founder and former CEO of Targacept
- Current Board member arGEN-X NV, Newron Pharma SPA, Proterra and Alumedix
- 30 years of experience in the biotechnology and consumer products industry

Dr. Hubert Birner
- Managing Partner TVM Capital Munich and Montreal
- Chairman of the Board of AL-S Pharma (Zurich), Argos Therapeutics (Durham, NC), leon-nanodrugs (Munich), Spepharm Holdings (Amsterdam)
- Board member of Proteon Therapeutics (Boston)
- Previously at McKinsey and Zenea

Dr. Maurizio Petitbon
- General partner and co-founder of Kreos Capital
- Former managing partner of PMA Europe
- SRI International, in Menlo Park, California and London
- Managerial positions at Emerson Electric, Digital Equipment and Xerox.

Dr. Walter Wenniger
- Held several international executive management positions at Bayer Pharma life sciences including as member of the management board of Bayer AG
- Board member of several European pharma companies
- >30 years of pharma industry experience

Bertam Köhler
- CEO and board member of DEWB
- Board member of of Nanotron Technologies Ltd. and LemnaTec GmbH
- Previously risk management consultant Commerzbank
- Former management consultant KPMG
NOXXON’s Key Patent Families Related to NOX-A12 and NOX-E36

NOXXON’s key patent families related to NOX-A12 (olaptesed pegol)

<table>
<thead>
<tr>
<th>Family</th>
<th>Title</th>
<th>International</th>
<th>International filing date</th>
<th>Granted patents</th>
<th>Pending patent applications</th>
</tr>
</thead>
</table>

NOXXON’s key patent families related to NOX-E36 (emapticap pegol)

<table>
<thead>
<tr>
<th>Family</th>
<th>Title</th>
<th>International</th>
<th>International filing date</th>
<th>Granted patents</th>
<th>Pending patent applications</th>
</tr>
</thead>
</table>